
Chapter 15: Writing to an LCD Text Display with Parallel Data Communication

Often in a project you will have a need to display information for a user. The easiest way to do this is to

use one of the 1, 2 or 4 line text displays that are commonly available either new or removed for old

medical equipment. These displays are available from a variety of sources including the following:

All Electronics (www.allelectronics.com)

BG Micro (www.bgmicro.com)

Mouser Electronics (www.mouser.com)

CrystalFontz (www.crystalfontz.com)

When searching for a display, look for one that has a Hitachi HD44780 controller chip. This will include

most of the cheaper displays that use parallel data communication. All Electronics and BG Micro will

likely have these for under $10. You may want to avoid the one line displays because the addressing is

somewhat confusing. The one line display is really a two line display where the first half of the display is

the first line and the second half of the display is the second line. So if you have a 16 x 1 display, you

write the first eight characters and then you have to advance to the second line to write the second eight

characters.

Assuming you are planning to use this in conjunction with your bread board, it would also be useful to

have a display that has a single row of pins for electronic connections, since a double row will be more

difficult to plug into a bread board. At this writing, All Electronics has a 16 character by 2 line display

for $6.50 (LCD-129).

These displays will have a set of either 14 or 16 holes along the bottom of them which can be used to

connect to your bread board (you only need to use the first 14 holes of a 16 hole strip). The easiest way to

connect the display to your board will be to add a row of 14 pins (called a “header”) spaced .1 inch. All

Electronics sells a 40 pin header for $1.50 (DHS-40) which would be enough pins to supply 2 displays.

Cut 14 pins off the end of the header and they should fit in the holes in the display. You will need to use

a soldering iron and some solder to attach the pins in such a way as to make a solid electrical connection.

The holes will be numbered 1 through 14, though there may not be any indication on the display as to

which pin is number 1. Often All Electronics has documentation for these display that show you which

pin is number 1, but if documentation is not available, you can figure it out by knowing that pin number 1

is ground. Use an ohmmeter to find which end pin has zero resistance between the pin and mounting

hardware on the display. Alternatively, the ground pin will almost always have a wider trace running into

it than the pin on the other end of the row of holes.

As with the RS232 example in Chapter 14, the PICKIT 3 does not supply enough current to power the

LCD display. Furthermore, unlike the MAX3232, the LCD display requires 5 volts, not 3 volts, to work.

You can provide this voltage by using an AA battery holder that holds 3 batteries as described in Chapter

3.

Connecting the LCD Display to a Microcontroller

The LCD uses parallel data communication to write an entire byte to the display at once. The ideal way

to do this would be to use eight pins of one port to do this. The only port on this particular chip that has 8

pins is Port C, and, unfortunately, two of those pins are being used for programming. For the first part of

this chapter we will use all of the pins on Port C by unplugging the LCD display when programming the

chip and unplugging the programmer and reinstalling the LCD display when we run it. Using this

configuration it will not be possible to use the PICKit 3’s hardware debugger.

http://www.allelectronics.com/
http://www.bgmicro.com/
http://www.mouser.com/
http://www.crystalfontz.com/

The second part of the chapter will show how to run the display in “four bit mode” which will allow us to

run the display and the PICKit 3 at the same time.

Figure 1: Wiring Diagram for an LCD Display

Figure 1 shows how to connect the LCD display to your bread board. The four wires that are

shown in pink are either white wires (which would not show up on the diagram) or lengths that

are not available in a standard bread board wire kit. In the latter case you will need to use the

longer lengths in the kit and cut them to fit. Here is a summary of the wire connections:

Display Pin Display Name PIC Pin PIC Description

1 GND

2 PWR

3 Contrast (GND)

4 RS 10 RB7

5 R/W (GND)

6 E 11 RB6

7 D0 16 RC0

8 D1 15 RC1

9 D2 14 RC2

10 D3 7 RC3

11 D4 6 RC4

12 D5 5 RC5

13 D6 8 RC6

14 D7 9 RC7

Table 1: Connections between the 16F1459 and the LCD Display

The first two pins provide power to the display. The third pin is labeled “Contrast” and calls for

a potentiometer to be connected in a voltage divider circuit that provides a variable voltage to

this pin to control the display contrast. However, my experience is that the contrast on the

display is almost always optimal when zero volts is fed into this pin, so I have simply skipped

the potentiometer and connected it directly to ground.

Sometimes you will be issuing a command to the display, for example to clear the screen, and

sometimes you will be sending data to the display to be placed on the screen. This is determined

by pin 4, the RS line. When it is low, it is set to receive instructions, when it is high, it is set to

receive data to display on the screen.

It is possible to read the memory contents of the display as well as write to it. However, I find

that it is almost never necessary to do this. The display is configured for being written to when

Pin 5 (labeled R/W) is connected to ground and it is configured to be read from when 5 volts

appears on this pin. In Figure 1, this pin is connected to ground, causing the display to always be

written to and never be read. Pin 6, which is labeled “E”, is the clock line which causes the

display to read the data on the eight data lines. Those eight data lines are pins 7 through 14.

There are a number of commands that can control the state of the display. The most important

ones are1:

Binary Value Command Notes

0000 0001 Clear Display Also returns the cursor to the home position.

0000 0010 Cursor Home Does not clear the display.

0000 01AB Entry Mode Set A = 0, cursor moves to left. A = 1, cursor moves to right.

 B = 1, display shifts, B = 0, no display shift.

0000 1ABC Display on/off A = 1, display on; B = 1, cursor on; C = 1, cursor blink.

0001 AB** Cursor/Display Shift A = 0 shift cursor; A = 1, shift display.

B = 0, shift left; B = 1, shift right.

001A BC** Function Set A = 0, four bit interface. A = 1, 8 bit interface.

 B = 0, one line; B = 1; two lines.

 C = 0, 5x8 dots; C = 1 5x10 dots.

1NNN NNNN Address Set address (NNN NNNN) of next character to be written.

Table 2: Display Commands

Note that in the Function Set command it is possible to run this display using only a 4 bit

interface. In that case the data of the characters to be displayed are written 4 bits (one nibble) at

a time. In that case, only four data lines (those on pins 11 through 14) are required.

Programming the PIC Microcontroller to Drive an LCD Display

When learning a new programming language, programmers often begin with a “Hello World”

program. This is a program that simply prints the text “Hello World” to the screen. When we

started programming with a PIC, this was not possible because the PIC had no screen. Often it is

said that the blinking LED is the “Hello World”program of embedded programming. Now,

however, we have the tools to write a real “Hello World” program.

The initialization section of our program will have to do the usual initialization of the TRIS,

ANSEL and OSCCON registers, but in addition, it will set up the display for writing. All of the

PIC pins in Table 1 must be set as outputs. So the TRIS registers will look like this:

 TRISB = 0; //RB0 – RB3 do not exist on this chip so the associated TRIS values do not matter.
 TRISC = 0;

The ANSEL registers must be setup as all digital pins:

 ANSELB = ANSELC = 0;

And the OSCCON register will be setup to provide a 4 MHz oscillator:

 OSCCON = 0b00110100;

1 In this table, the use of an * means the bit is ignored.

Every time a byte is sent to the display it will be necessary to cycle the E (think clock) pin

(RB6). Thus, it might make sense to spin this off into a separate function called “pulse()”.

Different instructions require different amount of times to execute, but none of them require

more than 2 ms, so we will incorporate a 2 ms delay in the pulse function. The function will

look like this:

void pulse(){
 RB6 = 1;
 RB6 = 0;
 __delay_ms(2);
}

It is the dropping of RB6 that causes the data to be read by the display. We will initialize that

line to 0 since the pulse function will raise it and then lower it. Initialization of the display will

appear as follows:

RB6 = 0; //set E low to prepare it for pulsing
RB7 = 0; //set RS low because we are about to issue commands not data
__delay_ms(125); //wait for display to power up
PORTC = 0b00111000; //set 8 bit, 2 lines, 5x7 matrix
pulse(); //send the command
PORTC = 0b00001111; //display on, cursor on, cursor blinking
pulse(); //send the command
PORTC = 1; //clear display
pulse(); //send the command
RB7 = 1; //switch to data mode

Notice that the bit patterns for the commands are taken from the command table (Table 2). Note

that when we are done setting up the display, we make the R/S line (RB7) high so that we can

write data to the display. Writing data to the display involves writing data to specific memory

locations in the HD44780 display driver chip. The chip then takes care of writing the pixels to

the screen for each character in memory. To write text, first create an array to hold the text to be

transmitted:

 char hellotext[] = {'H','e','l','l','o',' ','W','o','r','l','d'};

Then write the code to print out the array to the display:

 char i;
 for (i = 0; i< 11; i++){
 PORTC = hellotext[i];
 pulse();
 }

In summary, here is the entire eight bit version of the LCD Hello World program:

#include <stdio.h>
#include <stdlib.h>
#include <xc.h>
//pragma statements to set configuration bits go here…
#define _XTAL_FREQ 4000000
void initial();
void pulse();

int main(int argc, char** argv) {
 char i;
 char hellotext[]= {'H','e','l','l','o',' ','W','o','r','l','d'};
 initial();
 for (i = 0; i< 11; i++){
 PORTC = hellotext[i];
 pulse();
 }
 while(1);
 return (EXIT_SUCCESS);
 }

void pulse(){
 RB6 = 1;
 RB6 = 0;
 __delay_ms(2);
}

void initial(){

 OSCCON = 0b00110100; //4 MHz clock
 ANSELB = ANSELC = 0; //all pins digital
 TRISB = TRISC = 0; //set up the pins as output
 RB6 = 0; //set E low to prepare it for pulsing
 RB7 = 0; //set RS low because we are about to issue commands
 __delay_ms(125); // make sure the display is fully powered up before proceeding
 PORTC = 0x38; //set 8 bit, 2 lines, 5x7 matrix
 pulse(); //send the command
 PORTC = 0x0F; //display on, cursor on, cursor blinking
 pulse(); //send the command
 PORTC = 1; //clear display
 pulse(); //send the command
 RB7 = 1; //switch to data mode

}

Moving On to Four Bit Mode

PIC pins are a scarce resource, and there’s no reason to use eight of them when the display will

allow us to get by with using only four. In addition, doing this will allow us to connect the

PICKit 3 and the display at the same time. To accomplish this we will need to make two

changes to the above program. First, we need to break each byte into two four bit nibbles and

send them one after the other on pins RC4 – RC7. In addition, we need to change the display

initialization routine so that it puts the display in four bit mode instead of eight bit mode.

Putting the display in four bit mode requires that we have the capability to either send the two

nibbles of a byte or to send just one nibble. As a result, we will use two functions to accomplish

this. Sending a single nibble (just the four most significant bits) could be accomplished with the

following code:

void sendnibble(char b){
 PORTC = b;
 pulse();
}

The problem with this approach is that it may alter the state of the RC0 – RC3 pins as well as the

ones we intended to set. Two of those pins (RC0 and RC1) are connected to the PICKit 3, but it

is possible that we might be using the other two pins for some other purpose.2 As a result, we

may want to insure that we do not alter the state of the four least significant bits of Port C. This

can be accomplished by changing the contents of the sendnibble() function as follows:

void sendnibble(char b){
 RC7 = (b & 0b10000000)>>7;
 RC6 = (b & 0b01000000)>>6;
 RC5 = (b & 0b00100000)>>5;
 RC4 = (b & 0b00010000)>>4;
 pulse();
}

This code uses a bitwise and operation to strip off the upper four bits of the byte that is being

transmitted one by one. Then it left shifts the result into the appropriate location in the Port C

register.

Sending an entire byte will require that we send the four most

significant bits, then shift the four least significant bits four bits to

the left and then send these four bits. The following function

accomplishes this:

void sendbyte(char t){
 sendnibble(t);
 t = t << 4;
 sendnibble(t);
}

The last step will be to modify the display setup routine so that it

puts the display in four bit mode. This involves sending the upper

four bits of the function set command (see Table 2) four times. The

first three times we command the display to 8 bit mode and the

fourth time we command it to four bit mode. At this point the

display is ready to receive the entire byte of the function set

command which will also allow us to set the number of lines that

the display has. For a two line display, the code will be as follows:

 sendnibble(0b00110000);
 sendnibble(0b00110000);
 sendnibble(0b00110000);
 sendnibble(0b00100000);
 sendbyte(0b00100000);

You may have noticed that the only choices for the number of lines on a display are one or two.

Yet, there are many four line displays available that use the HD44780 controller chip. On these

displays the text appears as four lines, but from the display’s perspective, there are really only

two. The third line is simply a continuation of the first line and the fourth line is a continuation

of the second.

2 Note that it is also possible that C0 and C1 are being used for another purpose as well, once the PICKit 3 is
disconnected.

Figure 2: Sending in Four Bit Mode

Placing Text Precisely on the Display

So far, all we have done is to write text to the display starting at the top left corner. It is possible

to achieve much more interesting effects if you can force each byte written to appear precisely

where you want. In doing this you can center text, or produce special effects, such as having the

text appear to fly in from the side of the display. To accomplish this you use the last command

in Table 2, which allows you to specify the location of the next character that will be displayed.

To understand how to use this, you must understand how memory locations are specified for the

display. Assuming we are dealing with a 4 line display, the four lines of the display begin and

end with the following addresses:

 First Character Address Last Character Address
 (Assuming 20 characters/line)

Line 1: 0x80 = 0b1000 0000 0x93 = 0b1001 0011

Line 2: 0xC0 = 0b1100 0000 0xD3 = 0b1101 0011

Line 3: 0x94 = 0b1001 0100 0xA7 = 0b1010 0111

Line 4: 0xD4 = 0b1101 0100 0xE7 = 0b1110 0111

The reason that the display starts at 80 and not zero is that the initial 1 is the 1 in the command

table that specifies that this command is a display data memory address. The controller was

originally designed to handle lines that are up to 40 characters in length and two lines. Four line

displays are achieved by splitting the lines in half. Line 1 continues on line 3 and line 2

continues on line 4. This is clearly shown by looking at the last address on line 1 and the first

address on line 3. Note also that bit 7 of the address indicates whether the byte is on line 1 (if it

is a 0) or line 2 (if it is 1). This is why line 2 starts at 0xC0 instead of 0xA8 (the next byte after

the end of line 3).

To place a character at a specific location use the following procedure:

1. Make the R/S line (Pin RB6) low to enter command mode.

2. Write the address to the display.

3. Make the R/S line high to enter data mode.

4. Write the desired character to the display.

The code below would take the Hello World text and have it appear to fly in from the right side

of the screen character by character. Each character starts at the far right of the display. It is

then replaced at that location with a space and is written to the next address to the left. This

continues until it arrives at its final location on the display. The process repeats for each of the

twelve characters.

char i,j;
char text[] = {'H','e','l','l','o',' ','W','o','r','l','d', '!'};
for (j = 0; j< 12; j++){

for (i = 0x8F; i>= 0x80+j;i--){
RB7 = 0;
PORTC = i+1;
pulse();
RB7 = 1;
PORTC = ' ';
pulse();
RB7 = 0;
PORTC = i;
pulse();
RB7 =1;
PORTC = text[j];
pulse();
if (text[j] != ' ') __delay_ms(60);

}
}

Using Tables to Simulate Arrays in Assembly Language

Anything that involves text would seem to be a natural place to use an array, if you are writing in

C. However, there are no arrays in assembly language. Microchip has introduced something

that works in a very similar way, however, called a table. Consider the follow code:

lookup
 addwf PCL, f
 retlw ‘H’
 retlw ‘e’
 retlw ‘l’
 retlw ‘l’
 retlw ‘o’
 retlw ‘ ’
 retlw ‘W’
 retlw ‘o’
 retlw ‘r’
 retlw ‘l’
 retlw ‘d’

This code involves several new instructions. The addwf instruction takes the specified register

(PCL in this case) and adds to it whatever is in the working register. The result can be placed

either back in the file (by specifying “,f”) or in the working register (by specifying “,w”).

The PCL register is the program counter. It keeps track of the location of the next instruction to

be executed. As a result, when lookup is called, the effect of the addwf instruction will be to skip

however many instructions are in the w register at the time lookup is called. For example suppose

the working register contains 4 when lookup is called. After executing the addwf instruction, if

the PCL register had not been changed, the next instruction to be executed would have been the

retlw ‘H’ instruction. Instead, because 4 had been added to the program counter, execution will

skip down 4 instructions to retlw ‘o’.

The retlw instruction is similar to the usual return instruction except in addition to returning to the

point where this subroutine was called, it also places the specified byte in the working register.

As a result this code works in a manner that is very similar to an array lookup; place the number

of the entry that you want in the working register and call lookup. The subroutine will return

with the desired value in the working register. This makes it relatively easy to deal with groups

of characters, for example, when writing to an LCD display.

The above method will work with any 16 series PIC microcontroller. Some of the newer ones

(including the 16F1459) have added an additional assembly language instruction to make this

even easier. Simply replace the addwf PCL, f instruction with a brw instruction:

 lookup
 brw
 retfie ‘H’
 retfie ‘e’

 …etc.

TRY THIS: Create a digital voltmeter. Connect the potentiometer to one of the analog inputs as

you did in Chapter 12. Use the analog to digital converter to calculate the voltage and use the

display to show the result. For example:

3.5 Volts

If you use 8 bit analog to digital conversion, you can compute the voltage to the nearest tenth of

a volt. If you use 10 bit analog to digital conversion, you can compute the voltage to the nearest

hundredth of a volt. In either case this is the precision of your measurement. Accuracy will

depend on the accuracy of the reference voltage being used.

